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Using exact or approximate first integrals of the so-called truncated system of differential equations, it is shown that it is possible 
to improve the stability of the numerical analysis of dynamical systems described by stiff stochastic differential equations. A 
numerical example is given. © 1999 Elsevier Science Ltd. All rights reserved. 

The analysis and synthesis of dynamical systems which operate under random perturbations often 
involves the integration of stochastic differential equations (SDE). There are a number of specific 
problems, such as filtering, identification, prediction and optimal control, for which the SDE must be 
solved in real time. However, the computations involved are often difficult, due to the high dimension 
of the equations [1, 2]. This is even more evident in the case of SDE which exhibit the stiffness effect 
[3--8], which is expressed in the presence of boundary layers. 

Stiffness is an internal properly of a dynamical system whose description at any point in the observation 
segment requires functions of two forms: one which is rapidly decaying and has large derivatives and 
one with small derivatives. 

Stiff dynamical systems have to be considered separately because of the difficulty of using classical 
methods, such as Adams and Runge-Kutta integration, to solve the SDE. We know [3, 5-8] that the 
small integration step used to reproduce fast processes in a boundary layer cannot be increased outside 
the layer, even though the derivatives are much smaller there. Even a very small increase in the step 
can lead to rapid increase ("an explosion") in the error. There is a conflict between having a large enough 
interval for interpolation of the solution and an acceptable integration step. 

A number of ways in which it is possible to increase the integration step outside the boundary layer 
are described in [3-8]. However, there has not been wide use of implicit methods, which are the ones 
mainly considered in those studies, in the theory and practice of optimal filtering, identification, 
prediction and control. 

The stiffness effect can be removed by using the first integrals of the so-called truncated system of 
differential equations described below. This improves the stability of the numerical methods employed 
while allowing a large increase in the integration step. 

1. B A S I C  D E F I N I T I O N S .  S T A T E M E N T  O F  T H E  P R O B L E M  

Suppose the vector of state Xr(t) = [xi(t)] of the dynamical system is described by a system of SDE 
in symmetricized form 

dX I dt = A(t, X) + G(t)n(t), X(t 0) = X 0 (1.1) 

T where A (t, X) = [ai(t, x)], G(t) = [gij(t)] are known matrices with elements ai(t, x) and gij(t), which are 
T continuously differentiable functions satisfying the Lipschitz condition, n ~t) = [ni(t)] is the vector of 

white Gauss!an noise with given statistical characteristics: (n(t)) = 0(n(t)n (t + x)) = U~(x), U = [uij] 
~s a symmetric non-negative definite matrix of the intensity of the white noise, T denotes the transpose 
and (.)  denotes the mathematical expectation. Here and henceforth, unless otherwise stated, t e [to, 
to + 7] and the subscripts i and j take the values 1, 2 . . . . .  N. 

We know [3] that the stiffness of a system of SDE of the form (1.1) is determined by the behaviour 
of the solution of the truncated deterministic system 

dXId t  = A(t,X), X(to) = Xo = X0 (1.2) 
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Definition 1 [8]. A system of SDE of the form (1.1) is said to be stiff if the spectrum of the matrix 
[aA(t, X)/tgX] can be clearly divided into two parts (assuming N = K + M): a stiff spectrum whose 
eigenvalues satisfy the conditions 

and a soft spectrum for which 

* i g  , 

Re~,~-L,  Ilm~.kl<lRe~.kl, k= 1,2 ..... K 

I~ ml~ l ,~L ,  r e= l ,2  ..... M 

The ratio L/l 
is called the stiffness index of the system. 

The following definition is also used in practice. 

Definition 2 [3]. The system of SDE (1.1) is said to be stiff if 

I ~'i l exp(Re~,iXps)~ Lp.v INps, Re~,i < 0; 

I~, i I<~Lt~l Np.,., R e ~ , i ~ 0  (1.3) 

Lps =maxl~,,i l, Np.~>> l, '~ps "~T 

Corollary. It follows at once that a stiff system cannot have eigenvalues with a large modulus (of 
order Lps) which have a positive real part. For eigenvalues whose modulus is of order Los, we must have 
exp(Re ~,iXps) <~ Npp 1, Nps >> 1, that is, they must have large negative real parts. " 

We could also find out whether system (1.1) is stiff or not by integrating it on the initial segment by 
Euler's method. Any attempt to increase the small discreteness step Ax ~x  <~ II c~A(t, 'X)/aXII-1) leads 
to an exponential increase in the error. 

It is worth noting that the stiffness criterion can be changed, depending on the form of the SDE. Consider, for 
example, a SDE of the form 

M 
dXIdt=A(t,X)+ ~,Gm(t,X)n,n(t), X(t0)=X 0 (1.4) 

ra=l 

where A(t, X) = [ai(t , X)] T, G(t, x) = [g0(t, X)] T are known vector functions and nl(/), n2(t), nM(t) represent 
. . . . .  . /  . . " ' ' '  

white Gaussmn no~se w~th gwen statistical parameters and are independent of one another. 
In this case the criteria involve analysing the eigenvalues of a matrix of the form [4] 

M 
H(t) = H(t)+ Hr (t)+ •Bm(t)Brm(t) (1.5) 

m=l 

H(t) = 0A(t,X)/~X, B m (t) = aGm(t.X)lOX, m = 1,2,...,M 

As a rule, it is because SDE (1.1) and (1.4) are stiff that the numerical methods used to integrate them 
are unstable. Obviously, if we could use a sufficiently small integration step, the methods would be stable, 
but the demand on computational resources would become unreasonable. 

2. T R A N S F O R M A T I O N  OF 
THE S T O C H A S T I C  D I F F E R E N T I A L  E Q U A T I O N S  

Suppose system (1.2) has a known exact or approximate analytical solution 

X(t) = F(t, Xo), X(to) = X o = X o (2.1) 

An approximate analytical solution can be obtained by the method of supporting integral curves [9-12], 
in which 

x(t )  = c ( x  o)v(t)  

where C(-'Yo) = [co~ (-Yo)] (J0 = 1, 2 . . . . .  No) is a matrix of known coefficients which depend continuously 



The stiffness problem for stochastic systems and a method of solving it 879 

on the initial condition, X0, and V(t) = [Vl ( t ) ,  v 2 ( t )  . . . . .  vNO (t)] is a vector of independent 
functions. 

By analogy with the approach used previously in [13], for (1.2), allowing for (2.1), we define the vector 
of independent first integrals 

W(t, X_ Xo) = X - F(t, T o) (2.2) 

W(t, ~,, ~,o) = [wi(t, X, .~,o)] T, d~io/dt - O, which satisfies the condition 

~t W(t, X, X o) + {A (t, X ) D  x [W(t, X, X o)]} = 0 (2.3) 

and, on any solution ~,(t) of system (1.2), becomes the identity 

W(t,  X(t),  X o) = X(t)  - F(t, Xo) - 0, (2.4) 

The expression J{W(t, X, X0)} (where J{. } is any differentiable function) is obviously also a first 
integral of system (1.2). 

If, instead of X(t), we substitute the solution X(t) satisfying the SDE (1.1) into (2.4), we must replace 
the vector 'X0 by Q(t) = [qi(t)] r, for which 

W(t, X(t), Q(t)) = X(t) - F(t, Q(t)) = 0, dQ/dt  ~ 0 (2.5) 

Differentiating the left- and right-hand sides of (2.5) with respect to t, taking (1.1) into account and 
noting that, by virtue of (2.3) 

we obtain 

~t  W(t,X,Q) + r r {A ( t ,X)Dx[W(t ,  X,Q)]} = 0 

Dxr[W(t,X, Q)]G(t)n(t) o + Dr[W(t,X, Q)] dQ = 0 
" dt 

D x [ w ( t , X ,  Q)] = [Owi / Ox) ]r, OQ[W(t, X, Q)] = [Owi I Oqj ]r 

(2.6) 

From (2.5) and (2.6) we have 

G(t)n(t)- D~[F(t, Q)] dQ = 0 
dt 

Hence 

N _ 

dQ = {D~[F(t, Q)] }-I G(t)n(t) = G(t, Q)n(t) = ~ (7,) (t, Q)nj (t), Gj = [g0 ]7" (2.7) 
dt j=l 

It has been assumed here that the condition det D~[F(t, Q)] ~ 0 (t ~ [to, to + 7]) is satisfied, thus 
ensuring that the inverse matrix {D~[F(t, Q)]}-I exists. 

Theorem. The  system of SDE of the form (2.7) is not stiff. 

Proof. Since system (2,7) is similar to (1.4) in form, we can evaluate its stiffness by analysing the 
eigenvalues of the matrix (1.5). As it applies to (2.7) we have 

N _ 

f it(t) = ~.Bj( t ) [Yf( t ) ,  Bi(t) = bl~j/bQ (2.8) 
j=l 

A matrix of form (2.8) is symmetric (real Hermitian) and positive definite, and its eigenvalues are 
therefore real and positive [14]. Thus the conditions for stiffness stipulated by Definitions 1 and 2 and 
the corollary are not satisfied and a SDE of the form (2.7) is not stiff. 
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Using the above method we therefore transformed the initial stiff stochastic system (1.1) into the 
new non-stiff system (2.7). This enables us to relax the constraints on the choice of integration step in 
existing methods of solving differential equations, making it easier to obtain the required estimate in 
problems of filtering, identification, prediction and control. 

The  initial system (1.1) is solved using (2.7) as follows: 

X ( t ) = F ( t , Q ( t ) )  

As we have seen, the first integrals required for the non-linear model (1.1) can be found by 
approximate analytic methods, including the method of supporting integral curves [9-12]. 

The above method is most simply and clearly applied to linear SDE. In that case we can write formula 
(2.1) as 

w 

X(t) = O(t, t o )x  0 

where cD(y, to) is the fundamental matrix of solutions of the homogeneous system (1.2). Then (2.7) will 
take the form 

d Q  I dt = ~p-I (t, t o)G(t )n( t )  (2.9) 

The computational effectiveness of the method is greatest in the case when the solution X(t) of Eq. 
(1.1) does not need to be known at each integration step tk ~ [to, to + 7] (k = 1, 2 . . . . .  K) of Eq. (2.7), 
but only at certain intermediate times tt (l ~ (1, 2 . . . . .  K}) or at a finite time t/c = to + T. 

3. E X A M P L E  

We will apply the method to the problem of suboptimal estimation of the parameters of motion of an aircraft. 
In the time interval [to, to + T], suppose we observe a sample of the random process 

~(t) = S(t, X) + h(t) (3.1) 

where h(t) is broadband fluctuation interference approximating white Gaussian noise with parameters: (h( t ) )  = 0, 
(h(t)h(t  + ~)) = I,'6(T). 

The useful signal in (3.1) is given by the expression [2] 

S(t, X) -- Ao(t)cos[coo(t- 2c -IDr(t)) + q0(t)] (3.2) 

where Ao(t) and co o are the amplitude and carrier frequency of the useful signal, Dr(t) is the inclined distance from 
the aircraft to the point of reflection of the signal and q)(t) is the random phase of the signal. 

We will use the following mathematical model [2] to characterize the motion of the aircraft and phase fluctuations 
of the useful signal 

do,=w,, 
at T =at' " ~  =-flat at 3~ 2n~ 

dAC0 
f-.-.-.- j 

= ~,~ + q2~,~a~, n~ 
dt 

(3.3) 

X T= [Xl =Dr, x2 = Wr, x3 =ar, x4ffi qp, x5 = Aco] 

The vector of state x(t) to be evaluated satisfies the a priori equation 

dX/dt = AX + GN, X(to) = X 0 (3.4) 

where Nr(t) = [0, 0, na(t), n~(t), n,o(t)] is the vector of the white Gaussian noise with zero mathematical expectation 
and unit intensity and A = [aij], G = [g//] are matrices with non-zero elements: a12 = a23 = a45 = 1, a33 = - o r ,  

ass = -q%, g33 = ~/(2ctc2),g44 = x/(N¢/2), g55 = ~/(2"/0,c~2~) • In the given example, N = 5, that is, i , j  = 1, 2 . . . .  5. 

where W, is the projection of the ground speed of the aircraft in the direction of the speedometer beam, ar is a 
random process defining the radial component of acceleration of the aircraft, Aco is the uncompensated Doppler 
frequency shift and ~',o and ct are parameters characterizing the width of the Doppler frequency spectrum and the 
spectrum of fluctuations of the quantity a r respectively. 

Thus in this case the vector of state X(t) has the form 
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After appropriate transformations the equation which determines the algorithm of quasi-optimal evaluation of 
the vector applied to (3.1), (3.2) and (3.4) becomes 

~ / , t t  -- A(t)~(t) + ~(t)F~ (t,:i), X(to) -- X 0 

Fir(t,X) = [4o)0 c-I V-lAo(t)~(t)sin(~o), O, 0, - 2V-IAo(t)~(t)sin(~o), 0] 

~ o  = [¢00 ( t -  2b~ (t)c -I ) + ~(t)] 

(3.5) 

where K(t )  = [k~/] is the covariation matrix of the filtering errors. 
The potential accuracy and noise immunity characteristics of the optimal receiver and signal processor (3.2) can 

be obtained by solving the equation for the covariation matrix [2]. In this case it takes the form 

dK/dt = A K  + KA T + P + KRK, P = GIG 7. (3.6) 

The non-zero elements of the matrices P = Loij] and R = [rij] are given by the expressions 

P33=2¢xo 2, P44='YwD~, P55 =2y¢00 "2, r i l = - ( S c o 2 / c 2 ) V - I A 2  

r14 = r41 =(40~oIc )V- IA~ ,  r44 =-2V-IA 2 

Using criterion (1.3) to evaluate the stiffness of the initial system (3.4) (allowing or the fact that Tes = 10 -2 s), 
we determine the eigenvalues of the matrixA(t): Z1 = 0, Z2 = 0, Z3 = 5.10 -2, ~-4 = 0, ~.5 = -100. By (1.3), for the 
values ~.3 and ~.5 respectively we have Nps = 2010, Np, = 22026, which means that system (3.4) is stiff (since 
Nps ~" 1). 

Moreover, the spectrum of the matrix A(t) carLbe divided quite clearly into a stiff and a soft spectrum [8], with 
N = 5, K = 1, M = 4, ~,* = Ls, X2 = ~.2, ~-3 = k3, ~4 = ~4. It is clear from the stiffness index, defined as L/ l  = 2000 
(by Definition 1), for instance, that the problem is stiff. 

According to earlier results [3]t the step ~ ,  which ensures stable integration of systems (3.5), (3.6), is found 
from the condition AT ~ [[ A ( t )  I[- • 

We will eliminate the stiffness by the method described above. Using (2.9), we find the fundamental matrix of 
solutions @(t, to) for a truncated system of the form (1.2). 

The non-zero elements of the matrix ~(t, to) = [~ii] are 

IPll=CP22=(P44=l, CPl2---t-t 0, IPl3=(X-2{~(t- t0)- l+~a} 

q)23----~-l{l--~lx}, q)33=~a, (P4S=y-I{l - -~y},  (P55=~y 

(~cx = exp[a(t - t 0)], ~'r = exp[y(t - t 0)]) 

The elements of  the matrix 4)-](t, to) = 4h(t ,  to) are found similarly, except that 

q)(l)12 = '~12 ,  (D(1)I3 = o[-2 {~(x - c£ ( t -  t O ) -  l } 

'7, ? '.~ 

¢, 

I m  - m . , .  ~o, - z,, I Io ~11 ,~, / I , , , /  

I I #  - ZZI.8 - I J Y  0 
0.7 OZ 

Ls 

Fig. 1. 

~a tad s - t  

/0 

Fig. 2. 
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In this case, the non-stiff algorithm of quasi-optimal evaluation (3.5), (3.6) takes the form 

d(~ldt  =/~FI(t,Q), 0( to)=X(t0)  (3.7) 

dK l dt = la + tfR[f, P= GIG T, [((to)= g(to) 

where t7 = ~-l( t ,  to). ^ 
The transition from Q t o / (  is made by the formula 

X(t) = di~(t, to)(~(t ) (3.8) 

The non-zero elements of the vector Fl(t, 6 )  = [f0)i] z are given by the expressions 

f(l)l = 4(Ooc-IV-I Ao(t)~(t)sin(~2 ), f(i)a = 2V-I Ao(t)~(t)sin(~2) 

(~2 ffi t°o {t - 2c-I [ql (t) + q2 (t)(t - t 0) + a -2 [ot(t - t 0) - I + ~x I ]q3 (t)] +'y-I [! - ~1  ]t~4 (t) } 

2 The quantity Ao/(2yl 0 characterizes the signal-to-noise ratio in the observed sample ~(t). 
A computer simulation was carried out with the following initial data: 7co = 102 s-l, ~ = 5 x 10 -2 s -1, o- D = 102 m, 

ow = 30 ms -1, % = 10 ms -2, o'co = 1-10 Hz, % = ~/3. 
The results are shown in Fig. 1. The solid lines show the estimates for the vector of state X(t)  obtained by 

integrating the quasi-optimal system (3.5), (3.6) by a fourth-order Runge-Kutta method with step ax = 10 -3. This 
is then taken as exact. From the shape of the curve for Aco we see that system (3.4) is stiff. The dashed line shows 
the result of integrating system (3.7), after using the above method to compensate for stiffness in the stochastic 
system (3.4). By comparing the estimates for X(t)  and Q(t) we can see that the stiffness is eliminated as a result 
of the transformation. 

We evaluated the computational efficiency of the quasi-optimal estimation algorithm (3.5), (3.6) and (3.7) by 
using different integration steps. The results for the parameter Ac0 are shown in Fig. 2. Curve 3 show the result 
obtained with the non-stiff algorithm (3.7), (3.8) with AT = 10 -2 s, curves 1 and 2 show the results of conventional 
filtering algorithm (3.5), (3.6) with Ax = 10 -2 s and Az = 5.10 -3 s, respectively, and the dashed line is the exact 
solution. 

It can be seen that, even with integration step a~ = 10 -2 s, the filtering algorithm gives acceptable accuracy 
e ~< 1% with So = T/A~ = 200 integration steps, whereas we must have Az = 10 -3 s and So = 2000 to achieve the 
same accuracy with the conventional algorithm. 

Hence, the new method enables the step Ax to be increased considerably while yielding guaranteed computational 
accuracy. 
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